
Computational Techniques and Parallel Software Development for
Large-Scale Composite Manufacturing Process Simulations

D. R. Shires, R. V. Mohan,1 A. Mark, R. Kanapady,1 and K. K. Tamma1

U.S. Army Research Laboratory
Aberdeen Proving Ground, MD 21005

Abstract

Simulation-based design, testing, and acquisition have the potential to positively

address and reform some of the ailments found in the Department of Defense acquisition

process. Chie
y, these philosophies can be utilized to mitigate the high-cost associated

with new weapon systems and speed the product development cycle. In many cases,

high-performance and parallel computing resources can assist in these simulation-based

endeavors. Composite materials form the basis of many new weapon system develop-

ments. Manufacturing process simulations based on physical models and numerical

discretizations can be e�ectively employed to reduce the process and product lead

time for the composite material structures, thereby impacting the acquisition process.

This paper focuses on computational techniques and parallel software development

approaches for large-scale composite manufacturing process simulations for composite

structures manufactured by resin transfer molding with particular emphasis on resin

impregnation of the �ber preform. Computational techniques play a critical role in the

solution of physics-based simulations of large-scale geometrically complex structures

within a reasonable computing time. An e�ective solution technique for the analysis of

resin impregnation inside complex mold cavities is described and forms the basis of par-

allel software developments. Various topics, such as parallel programming paradigms,

architectures, languages, parallel software testing, validations, and preliminary per-

formance results of the ongoing parallel software development e�orts, are presented.

The overall e�orts are tailored toward an integrated modeling and testing framework

for net-shape composite manufacturing process simulations and product testing in a

concurrent engineering environment encompassing nontraditional physics-based high-

performance computing.

1 Introduction

The Department of Defense (DOD) current acquisition process often relies upon an anti-

quated and tedious set of principles, guidelines, and regulations that result in costly material

being delivered in an untimely manner. With all its imperfections, however, the system has

served the American �ghting force rather well. But as new materials form the basis of mod-

ern Army weapon systems, new philosophies and ways of thinking are required to reform

the acquisition of these weapon systems. Simulation-based design (SBD), simulation-based

testing (SBT), and simulation-based acquisition (SBA) form such new philosophies. These

1University of Minnesota, Minneapolis, MN 55455



philosophies can make e�ective use of high-performance computing resources, thereby per-

mitting large-scale, real-life modeling and testing in a simulation-based environment. These

simulations use models that involve the underlying physical laws, constitutive relations, and

robust numerical methodologies designed for optimal performance on high-performance su-

percomputing architectures. In particular, many new weapon systems employ advanced

composite materials made of �ber-reinforced polymer resins. These materials provide a high

strength-to-weight ratio, long fatigue life, increased corrosion resistance, and may be incorpo-

rated as multi-functional consolidated parts. Defense weapon systems, such as the RAH-66

Comanche, Composite Armored Vehicle (CAV), and the Joint Strike Fighter (JSF), along

with dual-use technology in the aerospace and automotive commercial industries, heavily

employ these composite material weapon systems. Figure 1 is one illustrative example of

the application of composite materials in new military weapon systems.

(a) RAH-66 Comanche helicopter. (b) Composite keel beam.

Figure 1: RAH-66 Comanche helicopter and its keel beam.

The prohibitive factor in the development and acquisition of new composite structural

weapon systems is not the capability, but rather the cost and limited experience in the

manufacturing processes. Of the various structural manufacturing processes, composite net-

shape liquid composite molding (LCM) processes such as resin transfer molding (RTM), or

its variants such as the Vacuum Assisted RTM, etc., permit large-scale manufacturing of

complex composite structures with desired �ber orientations to obtain directional properties

in a highly repeatable manner in a production environment. In addition, the process allows

building of multifunctional smart structures with embedded sensors for service and damage

detection. The process, however, involves repeated trial-and-error testing to determine a

working production methodology. This increases the manufacturing process lead time, cost,

and acquisition time of the composite material structures and subsequently the weapon

systems themselves.

Manufacturing process modeling simulations and analysis, based on representative phys-

ical models, provide a simulation-based approach and engineering tools for determining the

optimal process parameters and design of tooling and molds. Geometrically and functionally

complex composite structural components require accurate modeling of geometric, physical,

2



and material variations that could potentially involve large computational representative

physical models composed of several thousands to millions of degrees of freedom. It is

impractical and ine�ective to conduct such analysis on traditional computational problems.

High-performance computing platforms provide the necessary computing power and memory

for such large-scale analysis and require the development of optimal computational strategies,

implementation, testing, and validation of the appropriate parallel solution software.

This paper focuses on our approaches and experiences in parallel software development

using high-performance computing systems. In the implementation and development of

parallel software, it is not enough to have optimal parallel software design, programming

models, data structures, and interprocessor communication strategies. It is also essential to

develop computational algorithms, based on physically accurate representations of mathe-

matical models, that provide the required physical and engineering solutions in optimal time.

Here, we are not referring to the choice of one parallel algorithm versus another. We are

referring to the development of computational algorithms that will allow for the solution of

problems previously unsolvable in a reasonable amount of time even on high-performance

computing systems. In this context, a recently developed transient implicit methodology by

Mohan et al. [1{4] for the analysis of transient resin impregnation during a pressure-driven


ow through porous media has been demonstrated to provide a physically accurate, numer-

ically stable, computationally faster, and algorithmically better solution methodology. This

new approach forms the basis of our parallel software developments.

The important consideration from the manufacturing process point of view is the com-

plete impregnation of the �ber preform by the resin. Hence, the �rst phase of parallel soft-

ware development focuses on resin impregnation process 
ow modeling involving transport

phenomena of a 
uid resin through a porous �ber preform. Once the appropriate parallel

software paradigms, optimal data structures, and solution strategies are implemented, the

multiphysics phenomena involving thermal and species transport during curing and gelation

of polymer systems will be added in future phases.

2 Composite Manufacturing and the RTM Process

Of the various composite manufacturing processes, RTM has a signi�cant potential for

cost-e�ective manufacturing of large net-shape composite structural parts. The process is

shown schematically in �gure 2. The process employs \�ber preforms," which are pressed

beds of �ber arranged in the shape of the �nal structure. The preform is placed inside a

mold cavity, and a thermosetting polymeric resin is injected under pressure. After the resin

impregnates the �ber preform and cures, the �nished part is removed from the mold. With

proper design, the process can produce high-performance parts with the high �ber volume

desired in military and aerospace applications. The industrial experience base in RTM as a

complex manufacturing technology is limited. Accordingly, large, complex parts can bene�t

signi�cantly from large-scale process simulations.

3



(a) Preform lay-
up.

(b) Preform placed
in mold.

(c) Resin injec-
tion/curing.

(d) Part removal.

Figure 2: Steps in Resin Transfer Molding.

3 Governing Mathematical Model Equations and Computational Strategies
for Transport Phenomena in RTM

The governing mathematical equations for various transport phenomena during the RTM

process are presented next. As previously stated, the focus in this paper and in the current

phase of the parallel software development is on the resin impregnation during the process.

Hence, brief discussions of the numerical approaches for the resin impregnation process 
ow

modeling are presented, and the computational advantage of the recently developed pure

�nite element methodology is illustrated. Discussions of the on-going e�orts in the devel-

opment of computational strategies and serial software for thermal and species transport

phenomena with particular emphasis on axisymmetric conditions and experimental valida-

tions are discussed elsewhere [5, 6].

3.1 Resin Transport Through Fibrous Porous Media

The macroscopic 
ow behavior through �brous porous media is describe by Darcy's

law, which relates the average 
uid 
ow rate to the pressure gradient, 
uid viscosity, and

permeability of the porous medium as

�u = �

K

�
5 P; (1)

where �u is the volume averaged velocity of the resin at a macroscopic scale, � is the viscosity

of the resin, andK is the permeability of the porous �ber preform. Permeability is a measure

of easiness of 
ow through the porous medium and is a function of the �ber architecture

and porosity of the medium. It is an important material characteristic involved in the

phenomena.

Physically, resin impregnation and 
ow permeating through a porous media is a transient

free surface moving boundary problem, whereby the �eld equations and the free surface

have to be solved and tracked. In mold �lling and resin 
ow impregnation situations such

as those seen in RTM, the primary interest is in the temporal progression of resin inside

a complex, �xed-mold cavity. The geometric and material complexities of the structural

components lead to diverging/merging 
ow fronts and race tracking e�ects. Eulerian �xed-

mesh approaches are e�ective in accounting for these complexities in RTM resin impregnation

4



process simulations. The physical distribution of the resin at any instant of time is based on

a transient mass balance.

Traditionally, this mass balance has been described by a quasi-steady mass balance de-

�ned by

5 � �u = 0: (2)

This quasi-steady mass conservation, in conjunction with a �nite element-control volume

approach using the variable �ll factors to compute and track the resin impregnated and dry

preform regions, has been traditionally employed in RTM resin impregnation simulations.

However, this treatment leads to restrictions on the time step increments between each of

the quasi-steady states based on Courant conditions. Such restrictions realistically prevent

resin impregnation simulations for large-scale structures by increasing the number of quasi-

steady steps during complete impregnation. Accordingly, this solution technique makes such

large-scale simulations very much impossible even on high-performance computing platforms.

Another recently developed new approach is based on a transient form of mass conser-

vation equation [1{3] and is called the pure �nite element methodology. The �nite element

developments are based on and account for the transient mass balance of the resin inside

a �xed physical and computational domain. The transient mass balance equation at any

instant of time inside a general mold cavity is represented as

@

@t

Z



	d
 =

Z



	5 ��ud
: (3)

The resin front and the resin distribution inside the porous �ber region are based on the vari-

able �ll factor (	), which denotes the impregnated and dry regions inside the computational

domain.

The computational developments by Mohan et al. for the resin 
ow transport phenomena

are based on the introduction of the �nite element discretizations for the two unknown

variables{namely, the pressure and the �ll factor �eld. The resulting discretized system

of equations is solved in an iterative manner until a mass convergence is obtained. The

pure �nite element methodology is proven to provide a physically accurate, computationally

faster, and algorithmically better solution strategy for the �nite element modeling of the

resin impregnation through the porous media. It has also been well demonstrated for thin,

thick, and large-scale composite sections [1{4]. It is to be noted that the computational

advantage demonstrated by the pure �nite element method when compared with the �nite

element-control volume technique for RTM resin impregnation simulations is solely due to the

computational methodology and the algorithmic solution strategy. The e�ectiveness of this

strategy can be seen in any computational platform, from a desktop personal computer to

a high-performance computing system. The pure �nite element computational methodology

has also made possible large-scale complex resin impregnation simulations [4].

For large-scale process simulations involving high-performance computing systems, the

e�ectiveness of the method is independent of the taxonomy of the parallel processor topolo-

gies (interconnection networks, memory hierarchies, etc.) when similar data structures,

5



linear system equation solvers, programming paradigms, and communication strategies are

employed in the software development. As an illustration, the normalized computational

time (total solution time for the analysis) for complete impregnation of a 10-foot keel beam

con�guration involving 29,171 nodes and 58,187 elements is shown in Table 1. The com-

putational mesh geometry employed in the simulations and the temporal resin progression

contours based on representative injection locations are shown in �gure 3. Our experiences

with large-scale process simulations involving mesh con�gurations of higher order indicate

that the time step increments between each of the quasi-steady states of the �nite element-

control volume methodology are extremely small, thereby signi�cantly increasing the com-

putational times and precluding the completion of large-scale structure simulations in a real-

istic time. With the computational advantage of the pure �nite element method well estab-

lished [1{4], the technique forms the basis of current scalable, parallel software developments.

Table 1: Comparison of computational times: 10-foot keel

beam section.

Method Computational timea

Explicit FE-CV 31.28

Pure implicit FE (�t = 0:5 sec) 1.00

aRelative to the actual computational time corresponding

�t = 0:5 sec.

Figure 3: Process simulations: 10-foot keel beam section

4 Parallel Software Development

The governing mathematical equations and the computational approaches of the physical

problem have been brie
y described in earlier sections. The forthcoming sections focus on

the various issues related to parallel software design and development for a scalable, portable,

expandable (to add new problem physics), and e�cient parallel implementations. Discus-

sions on the taxonomy of parallel processor topologies, programming models, interconnection

frameworks, memory hierarchies, and our experiences during the ongoing parallel software

6



development are presented. Demonstrative results from some of the parallel software valida-

tions and software acceptance tests (SAT) are also brie
y presented.

4.1 On Architectures and Languages

There are several ways to classify parallel programming methodologies. We focus on

data parallelism and message passing. Data parallelism exploits the fact that the same

operation can be performed concurrently on each item in a set of data. We discuss our

experiences in converting a data parallel code written in CM-Fortran to High Performance

Fortran (HPF). Message passing most often involves domain decomposition and explicitly

de�ned parallelism realized through calls to a message passing library. We also discuss our

current parallel software developments in this context. Each paradigm is applicable to the

hardware platforms and topologies widely used today. These architectures include symmetric

multiprocessors (SMPs), of which the Sun Ultra E10000 is an example; massively parallel

processors (MPPs), of which the CM-5 and Cray T3E are examples; and scalable symmetric

multiprocessors (S2MPs), of which the SGI Origin 2000 is an example.

4.2 HPF Data Parallel Programming

The HPF model encompasses both communication and parallelism. It augments Fortran

90, which provides constructs to represent concurrent execution but not domain decompo-

sition. HPF provides additional parallel directives and data placement capabilities. Com-

munication is realized through data distribution, mapping, and alignment. It is the job of

the compiler to e�ectively map and distribute data. Communication is implicit in the code.

Parallelism is e�ected through several mechanisms, including Fortran 90 style array assign-

ments, parallel library routines, the FORALL statement, and the INDEPENDENT directive [7].

This list is not complete. Extrinsic procedures are available to allow for other programming

paradigms or languages. The language continues to evolve through changes to the standard.

Unlike MPI, which is realized through calls to a communication library, HPF is a language.

To write the most e�cient HPF code possible, it is therefore necessary to understand the

way an HPF compiler works. The HPF compiler employed during this study is the Portland

Group HPF (PGHPF) compiler version 2.4-4 installed at various Major Shared Resource

Centers.

4.2.1 Linear System Solver

The composite resin impregnation process simulations involve the solution of a linear

system of equations at each of the iterative steps. Traditional �nite element computations

and sequential software have normally employed an assembly operation of the element-level

sti�ness matrices into a global system of linear equations that are normally sparse. Direct

linear system solvers have been normally employed for resin impregnation process model-

ing simulations. In a multiprocessor environment, both computational and interprocessor

communication aspects have to be taken into account. For any of the programming models

7



and hardware con�gurations employed, direct solvers normally involve communication dur-

ing �ll-ins. Direct sparse matrix solution techniques involving highly unstructured meshes

are not e�ective for massively parallel computing platforms, except in some special cases

involving narrow bandwidth such as those in tridiagonal systems. Hence, iterative solution

techniques for the solution of linear system of equations have been employed. The iterative

linear system solver involves residuals computed at the element level in the �nite element

discretization with the convergence criteria determined based on the global level residual of

all the degrees of freedom during the solution process. To increase the convergence rate of

the linear system of equations, a diagonal preconditioner is employed. Detailed discussion

of the iterative system of equations based on a matrix-free element-level iterative solver can

be found elsewhere [4].

4.2.2 Experiences in Code Conversion

The HPF compiler attempts to support data parallelism found in prior data parallel lan-

guages. It supports and translates function calls from CM-Fortran. However, we found that

several changes were required and warranted with our pre-existing CM-Fortran data parallel

code. Two areas are of special importance. The �rst deals with array syntax. In the past,

many data parallel languages relied heavily on the use of array syntax to describe parallelism.

However, a major drawback to this syntax is that many temporary multidimensional arrays

are often required. Memory requirements can quickly get out of hand for even small prob-

lems. By using HPF directives and coding structure, several large multidimensional arrays

were replaced with scalars. Scalar replacement can have an enormous bene�cial impact on

cache-based architectures.

The second and most important change deals with gather and scatter calls. The CM-

Fortran code used the Connection Machine Scienti�c Software Library (CMSSL), which was

created for array syntax notation and data parallel architectures. The CM-Fortran code

used the CMSSL routines part scatter setup, part scatter, part gather setup, and

part gather. These routines were used to perform partitioned scatter and gather operations,

respectively. These routines are necessary for communicating nonlocal data. In the case

of scattering, these routines use a source array, a destination array, and a pointer array

containing the scattering pattern. Data are scattered from the source array to the destination

array.

The CMSSL routine part gather setup was available to optimize data locality and re-
duce the associated communication time. During the setup phase, this routine analyzed the
gathering pattern that was supplied and reordered the pointer array to achieve better data
locality. In HPF, there are no default library routines to do gather operations. The CMSSL
equivalent of the two calls:

call part gather setup(lm,.true.,fillfac,setup,ier)

call part gather(elfill,fillfac,.true.,setup)

can be performed by nested INDEPENDENT do-loops:

8



!hpf$ independent, new(j)

do i = 1, ndel

!hpf$ independent

do j = 1, nelem

elfill(i,j) = fillfac(lm(i,j))

enddo

enddo

The scatter operation is slightly di�erent. Here are the example CMSSL routines to perform

a scatter operation:

call part scatter setup(lm, .true., wgnode, setup, ier)

call part scatter(wgnode, wel, .true., setup)

There is an HPF library function sum scatter to perform the reduction:

wgnode = sum scatter(wel, wgnode, lm)

The full details of the implementation are hidden, but most likely this call computes a

communication schedule for data going to and arriving from remote nodes, moves the data,

and then computes the reduction. It is also possible for reductions to be performed locally

before sending out the data.

Communication operations can be very expensive. A pro�le of our code revealed that

it was communication-bound with well over 50% of the execution time spent in calls to the

sum scatter library routine. Approximately 20% of the time was spent in code segments

performing gather operations. The library routine sum scatter is called repeatedly, thou-

sands of times even for small problems. Since it is a library routine, our assumption was

that each time it was called, a schedule was being computed, executed, and any information

gathered by the scheduling algorithm was being discarded before the next call. This was

con�rmed through personal communication with the PGHPF compiler group [8].

The ability to reuse communication schedules is essential to getting good performance
with this code. The Portland Group has already recognized this need. They provided
us with an experimental release 2.4-dev99a of their HPF compiler. The Cray T3E is the
only computer currently targeted in this release. This version of the software allows the
programmer to store and reuse a pointer to the communication schedule determined by the
compiler. The schedule can be called repeatedly, thereby removing the need to recompute the
schedule at each call to sum scatter. While the details of the communication computation
are hidden, it is easy to envision a nonoptimal scheduling algorithm taking at least O(n2)
time, with n being the number of elements in a �nite element mesh. The call to alpkm1 =

sum scatter(aelpk, alpkm1, lm) is replaced with:

sked = pghpf_comm_sum_scatter_2(tfill,yl,.true.,lm,.true.)

...

call pghpf_comm_execute(sked, alpkm1, aelpk)

...

call pghpf_comm_free(1,sked)

9



The Portland Group reports that some users have experienced a three-fold code speedup

after switching to reusable schedules [8]. In our case, the time to compute the scatter

reduction was approximately cut in half. Currently, only the schedules for scatters may be

reused. While gather operations do not contain the arithmetic reduction, they are equally

problematic. Gather operations generate a lot of code to compute o�-node data locations.

In test runs, the gathers started to take longer than the scatter operations.

The ability to reuse communication schedules remains a vendor-speci�c feature as the

HPF 3.0 standard does not address the issue. It will undoubtedly be incorporated into

future standards. The ability to reuse communication schedules inside of independent do-

loops is also under investigation. Syntax to accomplish this has been proposed by the Japan

Association for HPF(JAHPF) [8].

4.3 Message Passing using MPI

An e�ective parallel programming model providing good portability across di�erent high-

performance computing architectures is based on MPI communication calls. The computa-

tional problem and the nature of the numerical discretization employed permit the decom-

position of the problem domain into several subdomains, with each assigned to a di�erent

computational processing element. Domain independent computations are carried out in

parallel in each of the subdomains without need for any communications between the pro-

cessors. Communications are involved when interface conditions and global quantities are

involved and are performed using MPI communication calls. Parallel software developments

based on this approach are currently in progress.

4.3.1 Parallelism in MPI

Unlike HPF, which attacks parallel programming from a higher conceptual level, MPI

is known as explicit parallel programming since the programmer must instrument the code

with appropriate communication calls to achieve the desired parallelism. This has both good

and bad connotations. Well-written code using few synchronous communications and block-

ing calls can be very e�cient. Conversely, the compiler cannot optimize poorly structured

communication since this is done strictly through user calls to library routines. MPI most

closely associates with the Single Program-Multiple Data (SPMD) model of parallel comput-

ing. Each processor has a copy of the program with local storage space for variables. There

are no shared variables amongst the processes. Each process works with unique data, and all

variables and data are communicated by explicit calls to a runtime messaging library. MPI

is probably the most widely used parallel programming method today and, as such, is very

portable across platforms [9].

Data placement, the partitioning of data to allow for parallel execution, is performed

through directives in HPF codes. MPI provides no such functionality. Instead, the user

must partition data sets in a way to limit communication requirements between the various

subdomains. This partitioning problem is in no way trivial. Fortunately, various utilities

10



have been developed to perform this function. We are currently using METIS and ParMETIS

for domain decomposition [10]. Figure 4 illustrates the di�erent partitioned subdomains of

a complex 24-foot keel beam of the RAH-66 Comanche based on a 16-processor partition.

The �rst step in the parallel software development using the MPI-based approach is set-

ting up appropriate data structures and formulating data sets for the di�erent subdomains

and processors based on the global mesh con�guration. It is also necessary to know the

neighboring processors and the interface nodes that are shared. This permits setting up

appropriate communication patterns, synchronization, and load balancing across the pro-

cessors. Interprocessor communication is needed whenever global quantities are required.

The linear system solvers again employ preconditioned iterative solvers based on matrix-free

element-level conjugate gradient residuals.

Figure 4: A 16-processor partition of the 24-foot keel beam.

MPI utilizes native compilers and is far less proprietary than many HPF compilers.

While complicating the software development cycle, it does open up the possibility for more

enhanced pro�ling and optimization. Because of the SPMD nature of MPI codes, �ne tuning

for parallel execution falls naturally from serial optimization since multiple copies of the code

will be executing. A complete discussion of the parallel software development, validation,

testing, and performance of the MPI-based domain decomposition approach as compared to

the HPF based approach will be disseminated in future publications.

5 CHSSI-SAT Requirements for Parallel Software Development

The Common High-Performance Scalable Software Initiative (CHSSI) program, under

which the current parallel software development e�orts are performed, requires the testing

and validation of the parallel software code with the results from analytical solutions, nu-

merical results from sequential codes, and experimental data. We brie
y present some of

the results from testing and validation of the parallel software developments for illustrative

purposes.

11



5
.1

R
a
d
ia
l
In
je
c
tio

n
-
C
o
n
sta

n
t
F
lo
w
R
a
te

In
je
c
tio

n

A
sim

p
le
circu

la
r
p
la
te

co
n
�
g
u
ra
tio

n
w
ith

ra
d
iu
s
R
a
n
d
a
h
o
le
o
f
ra
d
iu
s
R
0
a
t
th
e
cen

ter,

fo
rm

in
g
th
e
in
jectio

n
g
a
te

o
f
th
e
m
o
ld
,
is

co
n
sid

ered
.

T
h
e
in
n
er

ra
d
iu
s
o
f
th
e
p
la
te

is

su
b
jected

to
a
co
n
sta

n
t


ow

ra
te

in
jectio

n
co
n
d
itio

n
.
B
ein

g
a
sim

p
le
g
eo
m
etry,

a
n
a
ly
tica

l

so
lu
tio

n
s
a
re
ava

ila
b
le
fo
r
th
e
tem

p
o
ra
l
lo
ca
tio

n
o
f
th
e
p
ro
g
ressin

g
fro

n
t
a
n
d
th
e
in
let

in
jectio

n

p
ressu

re
[1
,2
].

C
o
m
p
a
riso

n
s
o
f
tem

p
o
ra
l
resin

fro
n
t
lo
ca
tio

n
s
a
n
d
in
let

in
jectio

n
p
ressu

res

o
b
ta
in
ed

a
n
a
ly
tica

lly
a
n
d
fro

m
th
e
p
a
ra
llel

so
ftw

a
re

d
ev
elo

p
m
en
t
co
d
e
(em

p
loy

in
g
m
u
ltip

le

p
ro
cesso

r
co
n
�
g
u
ra
tio

n
s)

a
re

sh
ow

n
in

F
ig
u
re

5
.

T
h
e
co
m
p
a
riso

n
s
clea

rly
in
d
ica

te
th
a
t

th
e
n
u
m
erica

l
resu

lts
fro

m
th
e
m
u
ltip

ro
cesso

r
p
a
ra
llel

so
ftw

a
re

m
a
tch

es
th
e
a
n
a
ly
tica

l
a
n
d

sin
g
le
p
ro
cesso

r
resu

lts
ex
a
ctly.

In
fa
ct,

th
e
p
h
y
sica

l
a
n
d
n
u
m
erica

l
tren

d
s
seen

in
a
sin

g
le

p
ro
cesso

r
so
lu
tio

n
a
re

a
lso

seen
in

m
u
ltip

ro
cesso

r
p
a
ra
llel

so
ftw

a
re.

O
th
er

co
m
p
a
riso

n
s
to

va
lid

a
te
a
n
d
test

th
e
p
a
ra
llel

so
ftw

a
re
w
ith

ex
p
erim

en
ta
l
d
a
ta

a
n
d
sin

g
le
p
ro
cesso

r
co
m
p
o
site

stru
ctu

ra
l
so
lu
tio

n
s
h
av
e
b
een

p
erfo

rm
ed
.

H
ow

ev
er,

th
ey

a
re

n
o
t
p
resen

ted
h
ere

d
u
e
to

sp
a
ce

co
n
sid

era
tio

n
s.

T
h
e
n
u
m
erica

l
resu

lts
o
b
ta
in
ed

fro
m

th
e
p
a
ra
llel

so
ftw

a
re

co
d
e
a
re

in

co
m
p
lete

a
g
reem

en
t.
E
�
o
rts

to
o
p
tim

ize
a
n
d
�
n
e-tu

n
e
th
e
co
d
e
a
re

in
p
ro
g
ress.

T
im

in
g
a
n
d

sca
la
b
le
stu

d
ies

co
n
tin

u
e,
a
n
d
resu

lts
w
ill

b
e
d
issem

in
a
ted

in
th
e
fu
tu
re.

0
20

40
60

80
100

T
im

e,s

0 1 2 3 4 5 6 7 8 9 10 11 12

Radius, cm

A
nalytical

N
um

erical(2P
)

N
um

erical(4P
)

N
um

erical(8P
)

N
um

erical(32P
)

N
um

erical(1P
)

N
um

erical(16P
)

T
im

e
step

size
=

0.5
s

(a
)
F
low

fro
n
t
co
m
p
a
riso

n
s

0
20

40
60

80
100

T
im

e,s

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

110000

Pressure, Pa

A
nalytical

N
um

erical(1P
)

N
um

erical(2P
)

N
um

erical(4P
)

N
um

erical(8P
)

N
um

erical(16P
)

N
um

erical(32P
)

T
im

e
step

size
=

0.5
s

(b
)
In
jectio

n
p
ressu

re
co
m
p
a
riso

n
s

F
ig
u
re

5
:
S
A
T
va
lid

a
tio

n
:
co
m
p
a
riso

n
s
w
ith

a
n
a
ly
tica

l
so
lu
tio

n
.

5
.1
.1

P
r
e
lim

in
a
r
y
P
e
r
fo
r
m
a
n
c
e
D
a
ta

(b
a
se
d
o
n
P
G
H
P
F
v
e
r
sio

n
)

S
in
ce

th
e
a
b
ility

to
reu

se
co
m
m
u
n
ica

tio
n
sch

ed
u
les

is
o
n
ly

su
p
p
o
rted

o
n
th
e
P
G
H
P
F

co
m
p
iler

fo
r
th
e
C
ray

T
3
E
,
o
u
r
d
iscu

ssio
n
s
a
re

cu
rren

tly
lim

ited
to

th
a
t
a
rch

itectu
re.

T
h
e

w
a
ll-clo

ck
ex
ecu

tio
n
tim

e
fo
r
a
p
a
rticu

la
r
p
ro
b
lem

a
n
d
rela

ted
p
ro
cesso

r
co
u
n
ts

is
g
iv
en

in

T
a
b
le
2
.
T
h
e
ex
ecu

tio
n
tim

es
a
re

b
a
sed

o
n
a
m
u
ltiu

ser
m
o
d
e
w
ith

o
th
er

u
sers

a
n
d
p
ro
cesses

ru
n
n
in
g
co
n
cu
rren

tly.
T
im

e
co
n
stra

in
ts
a
n
d
m
a
ch
in
e
a
ccess

lim
ited

th
e
n
u
m
b
er

o
f
cu
rren

tly

rep
o
rted

p
relim

in
a
ry

resu
lts.

W
e
p
ro
�
led

th
e
co
d
e
a
n
d
co
n
cen

tra
ted

o
n
o
p
tim

izin
g
th
e
m
o
st

tim
e
co
n
su
m
in
g
p
a
rt

o
f
th
e
a
lg
o
rith

m
.
H
ow

ev
er,

th
ese

resu
lts

a
re

h
ig
h
ly

p
relim

in
a
ry.

W
e

1
2



are in the process of better analyzing these numbers and collecting more runtime data to

determine more appropriate compiler options, data layouts, and memory management within

the code. As more processors are employed, the reduction in execution time indicates that

the code is highly parallel in nature. Further investigations regarding memory usage inside

PGHPF, etc., are required to optimize and �ne-tune the parallel software. Amdahl's law

appears to have negligible impact on explaining the decreasing e�ciency as more processors

are added. The limits to speedup appear to reside wholly in areas of the code requiring

interprocessor communication. As such, the ability to perform precommunication reductions

and reuse communication schedules appears to be the best opportunity at increasing code

speed. It is to be noted that the timings reported here are highly preliminary. Further

pro�ling, optimization, testing, and a potential expanded reuse of communication schedules

in the parallel software should provide even greater speedup. This work is currenty in progress.

Table 2: Wall-clock execution times (in seconds) of data

parallel Pure Finite Element code on the Cray T3E-1200.

Number of processors

Problem 8 16 32

RAH 10-foot keel beama 8515.41 6111.37 3603.69

a 29171 nodes, 58187 elements, time step size = 0.5 sec.

6 Concluding Remarks

High-performance and parallel computing resources can assist in the simulation-based

acquisition endeavors of new weapon systems. These require the development of appro-

priate parallel high-performance computing software for concurrent engineering analysis of

process, product design, and testing of new materiel systems. In particular, with compos-

ite materials forming the basis of many new weapon systems, the current e�orts in the

development of computational techniques and appropriate parallel software for large-scale

composite manufacturing process simulations were discussed. Physical mathematical mod-

els based on underlying physical phenomena form the foundation of the process simulations.

The current phase of parallel software development focuses on the resin impregnation trans-

port in dry �ber porous media during manufacture of net-shape composite structures by

RTM. Computational techniques play a critical role in the solution of physics-based sim-

ulations of large-scale, geometrically complex structures in a realistic computing time. A

novel transient �nite element technique to simulate the resin impregnation behavior during

composite manufacturing by the RTM process was brie
y highlighted. The pure �nite ele-

ment computational algorithm permits large-scale simulations to be completed in a realistic

time and assist in the production of large-scale, geometrically complex composite parts. The

current e�orts and experiences in the development of parallel software for large-scale resin

impregnation process simulations were discussed and presented. Work is in progress toward

code pro�ling and �ne tuning for optimization of PGHPF parallel code and in the develop-

ment of appropriate explicit message passing parallel software. Future e�orts will involve a

13



comparison of these two approaches for parallel software development. The overall e�orts

are geared toward providing an integrated modeling and testing framework for net-shape

large-scale composite structures.

References

[1] R. V. Mohan, N. D. Ngo, and K. K. Tamma, \On a pure �nite-element-based method-

ology for resin transfer mold �lling simulations," Polymer Engineering and Science,

vol. 39, January 1999.

[2] R. V. Mohan, N. D. Ngo, K. K. Tamma, and K. D. Fickie, \On a pure �nite element

based methodology for resin transfer mold �lling simulations," in Numerical Methods

for Thermal Problems (R. W. Lewis and P. Durbetaki, eds.), vol. IX, (Atlanta, GA),

pp. 1287{1310, Pineridge Press, July 1995.

[3] R. V. Mohan, N. D. Ngo, K. K. Tamma, D. R. Shires, and K. D. Fickie, \Process

modeling and implicit tracking of moving fronts for three-dimensional thick compos-

ites manufacturing," in AIAA-96-0725, 34 th Aerospace Sciences Meeting, (Reno, NV),

January 1996.

[4] R. V. Mohan, D. R. Shires, A. Mark, and K. K. Tamma, \Advanced Manufacturing of

Large Scale Composite Structures: Process Modeling, Manufacturing Simulations and

Massively Parallel Computing Platforms," Journal of Advances in Engineering Software,

vol. 29, no. 3-6, pp. 249{264, 1998.

[5] N. D. Ngo, R. V. Mohan, P. W. Chung, K. K. Tamma, and D. R. Shires, \Develop-

ments encompassing non-isothermal/isothermal liquid composite molding process mod-

eling/analysis: Computationally e�ective and a�ordable simulations and validations,"

Journal of Thermoplastics - Special Issue on A�ordable Composites, vol. 11, November

1998.

[6] N. D. Ngo, R. V. Mohan, K. K. Tamma, and D. R. Shires, \Finite element techniques

for the analysis of transport phenomena during composites manufacturing," in 21st

Army Science Conference - Science & Technology for Army After Next, (Norfolk, VA),

pp. 711{716, June 1998.

[7] C. H. Koelbel, D. B. Loveman, R. S. Schreiber, G. L. Steele Jr., and M. E. Zosel, The

High Performance Fortran Handbook. The MIT Press, 1994.

[8] Portland Group, 1999. Private Communication.

[9] P. Pacheco, Parallel Programming with MPI. Morgan Kaufmann, 1997.

[10] G. Karypis and V. Kumar, METIS: A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matri-

ces. University of Minnesota and the Army HPC Research Center, 1997.

14


